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Abstract

Lava flows are a very common volcanic phenomenon. Lava is also a very complex fluid and
influenced by a combination of effects from different areas of physics. The simulation of lava flows
is thus an interesting research topic and it has a wide range of applications from more theoretical
aspects to applied topics like risk analysis. Consequently about as many different approaches to the
simulation of lava flows exist as behaviours of lava – but no definitive solution.

In this paper we want to analyze some simple ways of looking at a lava flow, what key aspects
must be taken into account, how far the applicability of the models reaches and what the path to a
really full featured model of lava flows could look like.
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Figure 1: Distribution of a hypothetical Hengill lava flow next to a geological map [Sæ95] of the same
area (see Table 1 for parameters)
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Parameter Value
Model First model
Cell length 10 m
Timestep 720 s
Source position 64◦05 ′N, 021◦19 ′W
Influx 5 m/s in four cells for 72 h simulated time
Influx temperature 1373 K
Solidus temperature 1123 K
Cooling coefficient 6.15 · 10−15 m/K3

Adhesion model 6.08 · 102 m · e−5.55 · 10−3 KT

Table 1: Simulation parameters for Figure 1
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1 Introduction
Creating a simulation of lava flows requires many aspects to be considered: On the one hand there are
the dynamics of flow itself, the topography modulating the driving forces of gravity and the intrinsic
properties of lava, its rheological parameters. On the other hand there is the complex of thermodynamic
effects, the lava starting to loose thermal energy through radiation, convecting air or water and conduction
as soon as it leaves its vent. And the cooling lava changes with temperature, becoming more viscous and
finally solidifying.

A model of a lava flow must at least represent dynamic mass transport, influences on it by the molten
rocks’ material properties, first and foremost viscosity, and the change of them with heat loss. The model
will be governed by partial differential equations like the Navier-Stokes equation for the flow part.

Then there are several special features in lava flows that emerge from the interplay of the basic
processes – formation of crust, flow tubes or levees to name important ones – which are not mere side
effects but have decisive feedback effects on cooling and transport. They contribute to make lava a
combination of phenomena of various nature.

In order to approximate the mathematical model numerically we can choose to directly attack the
governing equations using finite difference or spectral solving strategies, or we can try to break down the
problem into more manageable units before solving instead of using the global equations for the whole
problem domain. This can be achieved with cellular automata or cellular nonlinear networks.

In addition we can choose to simplify parts of the model by not even attempting to obtain precise
state information of a certain type at each point in the lava flow but rather working with bulk averages.
In the case of lava flows the first big simplification one can make is the reduction to a two dimensional
problem, as the primarily interesting feature is the geographical distribution of lava and its shape in the
form of a thickness field. For this simplification we must average temperature and material properties
over the whole thickness of the lava flow, though, and we must neglect certain properties of flow in three
dimensions that are unlikely to affect lava. But it is necessary not to forget that we simplify a lot by
looking at a 2D problem only.

1.1 Cellular automata
For this project a cellular automata approach was chosen. Cellular automata work by splitting a larger
problem set into many small cells and assigning a set of state variables to each cell. Simulation proceeds
in steps updating the state of every cell at once, calculating parameters for each cell locally, based only
on the old state of the cell and its neighbours.

It is important to note the fact that state changes at once for all cells. This has the effect that the new
state of a cell only ever depends on the old state of itself and its neighbours. This is the main difference
to cellular nonlinear networks, for example, where this restriction is dropped, partially allowing the new
state of a cell to depend on the new state of neighbours, which can facilitate implementation in software
but complicate numerical properties.

The definition of how the cells look like, how they relate to the problem domain and what is a
neighbour can be chosen arbitrarily, as long as those properties are well defined and consistent for the
whole set of cells. For our lava flow simulations we will make the canonical choice of cells representing
spacial units and neighbours in a geographical sense.

Cellular automata can be used to simulate a system which is dominated by local interactions as every
cell is influenced directly only by adjacent cells. Not only does this apply to virtually any physical
system viewed at a certain level of detail, but also it complies very well with the nature of transport and
wave phenomena.

From the programmer’s viewpoint a cellular automaton based simulation program has the main ad-
vantage that parallel execution of the algorithms can be achieved easily and on the same level of ab-
straction as the problem solution itself. With cellular automata we do not look at the physical system
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as a whole but break it down into manageable units, the cells. We store all state variables per cell, we
apply the same laws of transformation from one time step to the next for every cell and the algorithm
only needs data from the currently processed cell and its neighbours to do its job. Thus it is possible to
distribute the set of cells into a large number of subsets each managed by a separate process for simula-
tion. These processes only have to communicate information about cells that are neighbours to ones in
another subset, which can conveniently be handled by shared memory or message passing architectures
for parallel computing alike.

Concerning this direct approach to the problem and handling of the data in portions defined by the
problem itself, cellular automata are quite the opposite of spectral partial differential equation solvers, for
example, which lift the problem at hand from the time to the frequency domain and then apply methods
of linear algebra, which constitute the only part in the algorithms that can effectively be parallelized,
although that is still not trivial.

2 The first model

2.1 Idea
This model is an independent reimplementation of the concepts presented in [BC+93]. It was chosen
mainly for the virtue of simplicity – both to ease the program development and to see how well a very
simple model would describe the problem.

The model uses a two dimensional cellular automaton. The area of interest is gridded into square
cells. For each cell, the four geographically adjacent cells directly to the north, east, south and west are
considered its neighbours.

The interesting idea behind this model, though, is to greatly simplify the description of lava by several
bulk averages and creatively chosen parameters. In particular, any type of explicit differential equation
solving to describe the motion of the lava or the heat transport in it is avoided.

2.2 Algorithm
For each cell we store the following parameters:

• The height of cell floor above mean sea level,

• the thickness h of the lava layer,

• the mean temperature T of the lava layer,

• the thickness of lava flowing in from the source every step,

• the temperature of lava flowing in from the source every step and

• the thickness of lava flowing out of the cell in the four main geographical directions in the next
step.

Of course lava heights always correspond directly to volumes, as we work with two dimensional cells
of fixed base area.

Although we have to follow the restriction of updating the whole board at once, sensible use of one
additional temporary variable per cell saves us from having to do double buffering with an additional
copy of the complete cell array.

In detail the simulation algorithm works as follows for every timestep:
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1. tf_mix in ca-lava-transform.h is called for every cell. The amount of lava flowing in
from the source (if present) and from each of the neighbours is looked up and added together with
the old height of lava in the cell.

The temporary parameter of the cell is updated to hold an average of all the lava temperatures,
weighed by the amounts of lava.

2. tf_cool is called for every cell. By averaging out the temperature in the first step, we assume
that the system always has enough time to become thermally well mixed. It is then sensible to
assume that the lava cools uniformly. In this model we only consider radiative cooling, which
follows the law

%cV
dT

dt
= −εσAT 4,

where % is the density of the lava, c the specific heat capacity, V the volume of the cell, t the time,
ε the surface emmissivity, σ the Boltzmann constant and A the area emitting radiation, the surface
of the cell. This is a separable differential equation so we can solve

t1∫
t0

−εσ

%c

A

V︸︷︷︸
= 1

h

dt =

T1∫
T0

T−4 dT

to obtain

(1) T1 = T0

(
3
εσ(t1 − t0)

%c

T 3
0

h
+ 1

)− 1
3

.

Radiative cooling is by the far the most effective process for heat loss of lava as long as the flow
does not have a thick crust or is emplaced under exceptional conditions such as strong artificial
or natural water cooling. Therefore if we reduce our cooling model to only one process, radiative
cooling is the way to go. [KD96]

Finally, if the cooling let the temperature drop below a certain threshold, we solidify the lava
by adding its thickness to the geographical height and resetting the thickness and source influx
variables of the cell to zero.

3. tf_equalize is called for every cell to determine the dynamics of the lava. This routine could
be considered the core of the algorithm. Still thinking in bulk averages we note that if left to
itself under the influence of gravitation, any liquid will with time level out to one flat equipotential
surface with minimum potential energy. Our algorithm uses this principle to determine the fluxes
of lava from one cell to another: An average height – geographical plus lava – of the current cell
and its neighbours is calculated and every neighbour with more height than the average is discarded
for the rest of this computation, then the averaging is repeated until no neighbours are left or all
neighbours are lower than the average. Lava outflux to the remaining neighbours is now calculated
proportional to their height below average level.

To take viscosity into account, a minimum retained thickness of lava decreasing exponentially with
temperature is calculated.

Depending on the local topography this tends to produce a locally flat surface.

In addition to the actual calculation routines a fair amount of support code is needed to control loading
and storing of data to and from the disk, managing the network interactions for distributed processing
(namely the communication of state along boundaries of sub-grids), running integrity checks on the data
if desired and printing status information.
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Figure 2: Principle of height balancing

2.3 Tuning the parameters
Of course a simulation program is only useful when fed some external parameters. We can see that in
our case the following parameters must be specified:

• The timestep length,

• the side length of input cells,

• the influx amount and temperature from the lava source,

• the cooling parameter 3 εσ(t1−t0)
%c

from (1) and

• the two viscosity coefficients for the exponential dependence of retained lava on temperature.

Influxes and their temperature can be chosen relatively arbitrarily to match the eruption characteris-
tics we want to simulate.

Once the time step has been fixed, the cooling parameter can be calculated from what is known about
the thermodynamic properties of the lava.

The choice of the viscosity parameters poses a greater problem, because the model’s way of describ-
ing viscosity is quite unusual. To figure out an estimate we consider a viscous fluid flowing down a
slope under the influence of gravity. In case of steady state, the Navier stokes equation for this situation
concerning the velocity parallel to the ground can then be written as

µ∂2
zv = %g cos α,

where µ is the dynamic viscosity, z the perpendicular distance to the ground, v the aforementioned speed,
% the density, g gravity acceleration and α the slope of the hill. Integrating this in z we can claim that

z ≈
√

vν

g
,
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where ν is the kinematic viscosity used for convenience. We can now plug in the free flow speed for v
to get a rough estimate for the retained lava height.

The remaining problem is now to choose a cell length and timescale for the model. This is less trivial
than one may think. On the one hand the time scale has to be suitably long to allow for mixing of the
lava in every step, on the other hand it may at least not be longer than it takes the lava at free flow speed
to flow through a complete cell length. But the cell length should not be chosen too large to get a good
spacial resolution and numerical stability.

As the model does not simulate the mechanics of the lava but uses the height balancing algorithm
described above instead, the progress of time only manifests itself explicitly in the model through the
cooling parameter.

We see that the timescale should be chosen with care. In this model as well as in the original reference
work a timestep and cell length that empirically fit well together are used.
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Figure 3: First model: Simulation with non-dimensional test values to illustrate the function, "height" h
and "temperature" T have been plotted on schematic terrain

2.4 Observations
Several tests of the algorithm show that it gets the distribution of a lava flow right at a large scale,
especially in the first phases of emplacement while the assumptions for cooling are valid best and the
viscosity is not very high.

The nature of the computations can never deliver a precise flow simulation in detail, but it may be
good enough for some sort of impact or affected area estimate.

Maybe the most problematic point about this approach is that the time and the velocity of the lava are
not made explicit in the model, which in turn leads to an unusual viscosity model and general uncertainty
about the best choice of parameters. When modelling an existing structure for reconstruction one can
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of course always fit the parameters by hand optimization or using an evolutionary algorithm in such a
way as to produce an output in better accordance with the measurements. But the virtues of this process
may be questionable because both the input parameters and outputs for temperature and thickness may
become rather unrealistic while the simulation still yields a nice geographical fit.

It would give the model greater credibility if the result was less heavily affected by a heuristic choice
of parameters.

3 The second model

3.1 Idea
Because of the observations of the first model’s behaviour a modified algorithm was implemented that is
based on the same two dimensional cellular automaton approach – and can thus reuse the first model’s
supporting code – but treats the motion of lava differently.

The primary goal was to base the simulation algorithm more closely on the physics of flow. For exam-
ple it is desirable to have explicit velocity in the model to be able to ensure the fundamental principle of
momentum conservation, which is completely neglected by the height balancing approach. Also render-
ing time and velocity explicit should render the model more robust concerning the choice of timescale.

Simulating the dynamics of flow explicitly allows us to model the viscosity a little more precisely, as
well.

In addition, as crust formation is a very important process with a great impact on lava flow devel-
opment, an automatic parameter modifying the radiative cooling depending on crust coverage estimated
from flow speed has been added to the model.

3.2 Algorithm
In order to stay simple this second attempt uses a cell-wise forward difference solver for the Navier-
Stokes equations at its core. The original Navier-Stokes equation is actually an acceptable approximation
as the assumption of incompressibility is very reasonable for lava and Newtonian viscosity can at least
describe the hot and fluid lava. The use of a Bingham model for fluid viscosity would be preferable,
though.

In terms of lava cooling still only energy loss through radiation is simulated, but now we modulate it
directly by crust coverage.

In this new model the cell state now consists of

• the height of cell floor above mean sea level,

• the thickness h of the lava layer,

• the mean temperature T of the lava layer,

• the vectorial velocity v of the flowing lava parallel to the ground,

• the thickness of lava flowing in from the source every step and

• the temperature of lava flowing in from the source every step.

The set of external parameters that have to be fed to the simulation grows by two coefficients for the
crust coverage estimate.

Finally the sequence of operation in every simulation step looks as follows now:
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1. tf_mix is called for each cell to calculate an average temperature and new height of lava after
applying in- and outflows to and from the cell.

This step is very similar to the first algorithm, but the outward fluxes are no longer an intrinsic
variable of the model here. They are calculated further down in the sequence of operation for the
next simulation step.

2. tf_cool is called for each cell to determine the radiative heat loss. The formula used in the
first algorithm is modified to scale the emitted energy down by a factor between 0 and 1 that falls
exponentially with the absolute value of flow speed following a consideration presented in [HR01].

If the temperature of the cell has dropped below solidus, the complete cell is assumed to become
solid like in the first algorithm. Note, though, that this new model does use a somewhat more
realistic representation of temperature dependent viscosity, so the step to solidification is not that
sharp.

3. tf_flow performs the last part of board state transformation for each cell and contains the core
of the new algorithm. Basically, the right hand side of the Navier-Stokes equation

Dtv = −1

%
grad p + ν∆v + f,

where p is the pressure and f the driving acceleration due to gravity influence, is calculated from
difference quotients involving the values of the neighbouring cells for first derivatives and of the
current and neighbouring cells for the Laplace operator.

The result is multiplied with the timestep of the simulation and added to the current velocity of the
cell. Then new outfluxes from the current cell are calculated for the next step, based on the total
lava content of the cell and the lava flow speed.

3.3 Observations
Although this model does produce flowing lava as well as the first one, the numeric stability of the
differential equation solver is a serious concern. It is of course possible to reduce the grid cell length
and time step to a comfortable level, but this comes at high computational cost. It seems advisable to
improve the code by using a different strategy which includes intelligent dampening terms, because as
one may guess from Figure 4 the model tends to produce exaggerated velocity values.

In addition some features that would be nice to have, such as simulation of a Bingham fluid instead
of a Newtonian one, would be good extensions to the model – but of course this also comes at the cost
of added complexity in the algorithm.

With increasing complexity of the partial differential equations it will become even more important
to choose a solid solution strategy. But it is non-trivial to combine the best available spectral solution
methods with a cell-based local view of the model world, simply because a stepwise solution in terms of
simulated time is not straightforward compatible with a solution in the frequency domain. It may still be
possible, though, to combine both approaches cleverly.

4 Conclusion
When following the path of cellular automata based lava simulation further, we would want to make
several additional improvements to our model. Starting with aspects of applied mathematics we saw that
we should attend to the numerical stability of the model. Helpful in this respect and well suited to reduce
computational cost would be a way to dynamically adapt the time step to the problem. As this adaption
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Figure 4: Second model: Simulation with non-dimensional test values to illustrate the function, "height"
h, "velocity" v and "temperature" T have been plotted on schematic terrain

would have to occur cell-locally it would complicate control flow of the software a lot. But it should be
possible to realize the necessary synchronizations within the presently applied worker-controller model
of task separation. Especially with large grids and long running simulations the tradeoff of additional
management overhead versus gained effective computation speed could be worth it.

Another fundamental improvement at the cost of code complexity would be to change from square
cells to hexagonal cells. This has mainly the reason that a hexagonal cell grid offers a better angular
resolution of flow directions and it does not force very ambiguous distribution of lava outflux towards a
cell vertex. Together this would make the whole model more realistic.

With a side view towards the possible combination with a finite elements method for partial differ-
ential equation solving a hexagonal partitioning of the model space also promises better results than a
square gridding.

But apart from these more technical issues we should also attend to physical problems with the model.
We have seen that our models produce acceptable geographical distributions for lava flows but include
many simplifications that do not only avoid difficulties for the calculations but also prevent the correct
simulation of more complex detailed behaviour of the lava. Even when sticking close to the governing
equations of fluid mechanics improvements would have to be made to the viscosity model and, maybe
most important, the cooling model. In order to become capable of simulating things like crust formation
correctly it is not sufficient to just derive the coverage from other model parameters, especially as the
exact dependencies are not fully understood here. Such effects that involve partial solidification of the
lava, require a much more fine grained cooling model that also takes conductive and convective effects
into account plus it becomes more and more complicated to sustain the restriction to two dimensions
when more complex lava phenomena like tubes should be simulated.

But we should note, that the requirements of which effects and state variables have to be modelled
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accurately and which are less important depend on the part of the lava flow we are looking at: Fast
‘a‘ā lava emplacement may be well modelled by the approaches described here, open channel flow
may require a very similar approach but the rigid boundary conditions can make determination of flow
direction even easier; flow underneath an insulating crust requires a different approach, most notably a
different cooling model, while emplacement of a single pāhoehoe flow lobe could be treated similarly
again, up to the point where crust tension becomes important; etc.

If we want to create a comprehensive model of lava flows it is probably a good idea to combine
several modules that concern themselves with the different lava transport processes and are optimized
for their specific purpose to avoid an explosion of computational cost due to an over-general model that
tries to include all possible effects.

5 Acknowledgements
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and Þorvaldur Þórðarson from the University of Iceland.
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A Where are the simulation programs?
You should have obtained a copy of the source code for the simulation programs together with this report.
If not, you can find links to packages containing the necessary files at http://www.chust.org/
projects/lava-flows/index.html.

The packages contain documentation generated from the sources and the source is commented. Ques-
tions on algorithmic details that are not covered in this report can hopefully be answered quickly by
looking at the code and comments.

B Compiling and running the models
To encourage everbody to compile highly optimized versions of the simulation code with tweaked com-
piler flags, and, even more important, to encourage people to actually look at the source code, no binary
package for the programs is provided. It was however a fundamental design goal for all the code to be
fairly portable.

B.1 Prerequisites
Before you can compile and run the models yourself, you will need working installations of the Paral-
lel Virtual Machine for parallel computing and build support [pvm], the NetCDF library and tools for
portable binary data storage [net] and an ANSI C compiler.

B.2 Starting the build process
The code has been tested on a PowerPC machine running MacOS X and using the GNU C compiler as
well as on an Intel based Linux cluster using the GNU and Intel C compilers.

If you are building on one of these architectures, you may want to copy or link the
custom-DARWIN.aimk or custom-LINUX.aimk file in the source code directory to
custom.aimk after unpacking the source package. These files contain some tweaked compiler set-
tings. The Linux version also causes the Intel C compiler to be used, which yielded slightly better
optimizations for my taste.

You can start the build with a command like aimk RELEASE=1 all in the source directory to
create all tools and simulation programs with debugging features turned off. Take a look at
Makefile.aimk and the source documentation to see which other top level targets may make sense
for you.

B.3 Creating simulation grids
Templates for empty simulation grids are contained in the source packages in the file sim-grid.cdl.
Run this file through the ncgen program to produce a usable binary simulation grid. You should also fill
the variable data sections for geographical height and source influx with reasonable values. Furthermore
you must define the global parameters and length of time steps.

The gridded values are assumed to be valid for the centers of the grid cells. Although you can specify
any rectangular grid cell geometry, the simulation programs work under the assumption that the grid is
equally spaced and has square cells.

Some utility programs for filling the simulation grid from a geographical grid in similar format and
for setting single or multiple values in the grid are available. You should refer to the source documenta-
tion for more information here.
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It is worth noting that the simulation grids are compatible with the Generic Mapping Tools [gmt].
If you use this suite of tools for graphical data visualization, you can directly operate on the simulation
grids to extract visual representations of the result data.

B.4 Starting a simulation
A simulation can be started very simply by passing the simulation grid file and the information how many
steps should be run in how many parallelly working task to the simulation controller program. Of course
PVM has to be running for this to work. For example to run the simulation on 15 machines, splitting
the grid equally into 3 columns and 5 rows, for 100 steps and dumping data back to the grid every 20
steps you would enter something like $PVM_ARCH/ca-lava my-simulation-grid.nc 3 5
100 20. To run the same simulation on a single machine without the help of PVM you would enter
$PVM_ARCH/ca-lava-serial my-simulation-grid.nc 100 20.

The serial version of the simulation program is functionally equivalent to the parallel one. It is mainly
useful if you want to run it inside a debugger or on a single machine, single processor system.
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